Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8006): 171-179, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509360

RESUMEN

The myriad microorganisms that live in close association with humans have diverse effects on physiology, yet the molecular bases for these impacts remain mostly unknown1-3. Classical pathogens often invade host tissues and modulate immune responses through interactions with human extracellular and secreted proteins (the 'exoproteome'). Commensal microorganisms may also facilitate niche colonization and shape host biology by engaging host exoproteins; however, direct exoproteome-microbiota interactions remain largely unexplored. Here we developed and validated a novel technology, BASEHIT, that enables proteome-scale assessment of human exoproteome-microbiome interactions. Using BASEHIT, we interrogated more than 1.7 million potential interactions between 519 human-associated bacterial strains from diverse phylogenies and tissues of origin and 3,324 human exoproteins. The resulting interactome revealed an extensive network of transkingdom connectivity consisting of thousands of previously undescribed host-microorganism interactions involving 383 strains and 651 host proteins. Specific binding patterns within this network implied underlying biological logic; for example, conspecific strains exhibited shared exoprotein-binding patterns, and individual tissue isolates uniquely bound tissue-specific exoproteins. Furthermore, we observed dozens of unique and often strain-specific interactions with potential roles in niche colonization, tissue remodelling and immunomodulation, and found that strains with differing host interaction profiles had divergent interactions with host cells in vitro and effects on the host immune system in vivo. Overall, these studies expose a previously unexplored landscape of molecular-level host-microbiota interactions that may underlie causal effects of indigenous microorganisms on human health and disease.


Asunto(s)
Bacterias , Interacciones Microbiota-Huesped , Microbiota , Filogenia , Proteoma , Simbiosis , Animales , Femenino , Humanos , Ratones , Bacterias/clasificación , Bacterias/inmunología , Bacterias/metabolismo , Bacterias/patogenicidad , Interacciones Microbiota-Huesped/inmunología , Interacciones Microbiota-Huesped/fisiología , Tropismo al Anfitrión , Microbiota/inmunología , Microbiota/fisiología , Especificidad de Órganos , Unión Proteica , Proteoma/inmunología , Proteoma/metabolismo , Reproducibilidad de los Resultados
2.
Nature ; 607(7919): 563-570, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35831502

RESUMEN

Gut commensal bacteria with the ability to translocate across the intestinal barrier can drive the development of diverse immune-mediated diseases1-4. However, the key factors that dictate bacterial translocation remain unclear. Recent studies have revealed that gut microbiota strains can adapt and evolve throughout the lifetime of the host5-9, raising the possibility that changes in individual commensal bacteria themselves over time may affect their propensity to elicit inflammatory disease. Here we show that within-host evolution of the model gut pathobiont Enterococcus gallinarum facilitates bacterial translocation and initiation of inflammation. Using a combination of in vivo experimental evolution and comparative genomics, we found that E. gallinarum diverges into independent lineages adapted to colonize either luminal or mucosal niches in the gut. Compared with ancestral and luminal E. gallinarum, mucosally adapted strains evade detection and clearance by the immune system, exhibit increased translocation to and survival within the mesenteric lymph nodes and liver, and induce increased intestinal and hepatic inflammation. Mechanistically, these changes in bacterial behaviour are associated with non-synonymous mutations or insertion-deletions in defined regulatory genes in E. gallinarum, altered microbial gene expression programs and remodelled cell wall structures. Lactobacillus reuteri also exhibited broadly similar patterns of divergent evolution and enhanced immune evasion in a monocolonization-based model of within-host evolution. Overall, these studies define within-host evolution as a critical regulator of commensal pathogenicity that provides a unique source of stochasticity in the development and progression of microbiota-driven disease.


Asunto(s)
Bacterias , Traslocación Bacteriana , Evolución Biológica , Microbioma Gastrointestinal , Hígado , Bacterias/genética , Bacterias/inmunología , Bacterias/patogenicidad , Traslocación Bacteriana/genética , Pared Celular/genética , Enterococcus/genética , Enterococcus/inmunología , Microbioma Gastrointestinal/genética , Genómica , Interacciones Huésped-Patógeno/inmunología , Humanos , Inflamación/microbiología , Inflamación/patología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/inmunología , Hígado/microbiología , Hígado/patología , Ganglios Linfáticos/microbiología , Mutación , Procesos Estocásticos , Simbiosis/genética , Simbiosis/inmunología
3.
Cell Host Microbe ; 30(7): 988-1002.e6, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35640610

RESUMEN

The impacts of individual commensal microbes on immunity and disease can differ dramatically depending on the surrounding microbial context; however, the specific bacterial combinations that dictate divergent immunological outcomes remain largely undefined. Here, we characterize an immunostimulatory Allobaculum species from an inflammatory bowel disease patient that exacerbates colitis in gnotobiotic mice. Allobaculum inversely associates with the taxonomically divergent immunostimulatory species Akkermansia muciniphila in human-microbiota-associated mice and human cohorts. Co-colonization with A. muciniphila ameliorates Allobaculum-induced intestinal epithelial cell activation and colitis in mice, whereas Allobaculum blunts the A.muciniphila-specific systemic antibody response and reprograms the immunological milieu in mesenteric lymph nodes by blocking A.muciniphila-induced dendritic cell activation and T cell expansion. These studies thus identify a pairwise reciprocal interaction between human gut bacteria that dictates divergent immunological outcomes. Furthermore, they establish a generalizable framework to define the contextual cues contributing to the "incomplete penetrance" of microbial impacts on human disease.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Vida Libre de Gérmenes , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Intestinos/microbiología , Ratones , Verrucomicrobia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...